
Practical 1

Aim: To Understand And Implement Basic Commands Of MATLAB.

Image Acquisition Toolbox

Device Connection

clear Clear image acquisition object from MATLAB workspace

delete Remove image acquisition object from memory

disp Display method for image acquisition objects

start Obtain exclusive use of image acquisition device

stop Stop video input object

Image Preview and Device Configuration

get Return image acquisition object properties

imaqhelp Image acquisition object function and property help

imaqtool Launch Image Acquisition Tool

propinfo Property characteristics for image acquisition objects

set Configure or display image acquisition object properties

Image Data Acquisition
Acquisition Using Any Hardware

Functions

imaqtool Launch Image Acquisition Tool

getdata Acquired image frames to MATLAB workspace

peekdata Most recently acquired image data

getsnapshot Immediately return single image frame

set Configure or display image acquisition object properties

start Obtain exclusive use of image acquisition device

islogging Determine whether video input object is logging

isrunning Determine whether video input object is running

isvalid Determine whether image acquisition object is associated with image
 acquisition device

wait Wait until image acquisition object stops running or logging

stop Stop video input object

clear Clear image acquisition object from MATLAB workspace

delete Remove image acquisition object from memory

flushdata Remove data from memory buffer used to store acquired image frames

load Load image acquisition object into MATLAB workspace

save Save image acquisition objects to MAT-file

trigger Initiate data logging

Image Processing Toolbox

 Import, Export, and Conversion
o Image data import and export, conversion of image types and classes

 Basic Import and Export
o Read and write image data, get information about contents of image files

1

Functions

imread Read image from graphics file

imwrite Write image to graphics file

imfinfo Information about graphics file

Reading Image Data

To import an image from any supported graphics image file format, in any of the supported

bit depths, use the imread function. This example reads a truecolor image into the MATLAB
workspace as the variable RGB.

RGB = imread('football.jpg');

If the image file format uses 8-bit pixels, imread stores the data in the workspace as a uint8
array. For file formats that support 16-bit data, such as PNG and TIFF, imread creates a

uint16 array.

Writing Image Data to Files

To export image data from the MATLAB workspace to a graphics file in one of the

supported graphics file formats, use the imwrite function. When using imwrite, you specify

the MATLAB variable name and the name of the file. If you include an extension in the

filename, imwrite attempts to infer the desired file format from it. For example, the file

extension .jpg infers the Joint Photographic Experts Group (JPEG) format. You can also

specify the format explicitly as an argument to imwrite.

This example loads the indexed image X from a MAT-file, clown.mat, along with the
associated colormap map, and then exports the image as a bitmap (BMP) file.

load clown

whos

Your output appears as shown:

Name Size Bytes Class Attributes

X 200x320 512000 double

caption 2x1 4 char

map 81x3 1944 double

Export the image as a bitmap file:

imwrite(X,map,'clown.bmp')

Specify Format-Specific Parameters

When using imwrite with some graphics formats, you can specify additional format-specific

parameters. For example, with PNG files, you can specify the bit depth. This example writes

a grayscale image I to a 4-bit PNG file.

2

imwrite(I,'clown.png','BitDepth',4);

This example writes an image A to a JPEG file, using an additional parameter to specify the
compression quality parameter.

imwrite(A, 'myfile.jpg', 'Quality', 100);

For more information about these additional format-specific syntaxes, see the imwrite
reference page.

Image Type Conversion

Convert between the image types, such as RGB (truecolor), binary, grayscale, and indexed.

Functions

gray2ind Convert grayscale or binary image to indexed image

ind2gray Convert indexed image to grayscale image

mat2gray Convert matrix to grayscale image

rgb2gray Convert RGB image or colormap to grayscale

ind2rgb Convert indexed image to RGB image

im2bw Convert image to binary image, based on threshold

gray2ind

Convert grayscale or binary image to indexed image

Syntax
[X, map] = gray2ind(I,n)

[X, map] = gray2ind(BW,n)

Description
[X, map] = gray2ind(I,n) converts the grayscale image I to an indexed image X. n specifies

the size of the colormap, gray(n). n must be an integer between 1 and 65536. If n is omitted,
it defaults to 64.

[X, map] = gray2ind(BW,n) converts the binary image BW to an indexed image X. n
specifies the size of the colormap, gray(n). If n is omitted, it defaults to 2.

gray2ind scales and then rounds the intensity image to produce an equivalent indexed image.

rgb2gray
Convert RGB image or colormap to grayscalecollapse all in page

Syntax

I = rgb2gray(RGB) example
newmap = rgb2gray(map) example

Description
I = rgb2gray(RGB) converts the truecolor image RGB to the grayscale intensity image I. The

rgb2gray function converts RGB images to grayscale by eliminating the hue and saturation

information while retaining the luminance. If you have Parallel Computing Toolbox™
installed, rgb2gray can perform this

3

newmap = rgb2gray(map) returns a grayscale colormap equivalent to map.

Display and Exploration

Interactive tools for image display and exploration

Basic Display
View image data, view multi-frame images (movies), set display preferences

Functions

imshow Display image

montage Display multiple image frames as rectangular montage

subimage Display multiple images in single figure

imshow

Display imagecollapse all in page

Syntax

imshow(I) example

imshow(I,RI) example

imshow(X,map) example

imshow(X,RX,map)

imshow(filename) example

imshow(___,Name,Value...)

imshow(gpuarrayIM,___) example

imshow(I,[low high]) example

imshow(___,Name,Value,...)
himage = imshow(___)

Description
imshow(I) displays the image I in a Handle Graphics® figure, where I is a grayscale, RGB

(truecolor), or binary image. For binary images, imshow displays pixels with the value 0

(zero) as black and 1 as white.

imshow(I,RI) displays the image I with associated 2-D spatial referencing object RI.

imshow(X,map) displays the indexed image X with the colormap map. A color map matrix

may have any number of rows, but it must have exactly 3 columns. Each row is interpreted as
a color, with the first element specifying the intensity of red light, the second green, and the

third blue. Color intensity can be specified on the interval 0.0 to 1.0.

imshow(X,RX,map) displays the indexed image X with associated 2-D spatial referencing
object RX and colormap MAP.

imshow(filename) displays the image stored in the graphics file specified by the text string
filename.

imshow(___,Name,Value...) displays the image, specifying additional options with one or
more Name,Value pair arguments, using any of the previous syntaxes.

imshow(gpuarrayIM,___) displays the image contained in a gpuArray. This syntax requires
the Parallel Computing Toolbox.

4

imshow(I,[low high]) displays the grayscale image I, specifying the display range as a two-
element vector, [low high]. For more information, see theDisplayRange parameter.

imshow(___,Name,Value,...) displays an image, using name-value pairs to control aspects of
the operation.

himage = imshow(___) returns the handle to the image object created by imshow.

Interactive Exploration with the Image Viewer App

View and explore images using the Image Viewer app, set display preferences

Functions

imtool Image Viewer app

imageinfo Image Information tool

imcontrast Adjust Contrast tool

imdisplayrange Display Range tool

imdistline Distance tool

impixelinfo Pixel Information tool

impixelinfoval Pixel Information tool without text label

impixelregion Pixel Region tool

immagbox Magnification box for scroll panel

imoverview Overview tool for image displayed in scroll panel

imtool

Image Viewer app

Syntax

imtool

imtool(I)

imtool(I,[low high])

imtool(RGB)

imtool(BW)

imtool(X,map)

imtool(filename)
imtool close all

Description
imtool opens the Image Viewer app in an empty state. Use the File menu options Open or
Import from Workspace to choose an image for display.

imtool(I) displays the grayscale image I in the Image Viewer.

imtool(I,[low high]) displays the grayscale image I in the Image Viewer, specifying the

display range for I in the vector [low high]. The value low (and any value less than low) is

displayed as black, the value high (and any value greater than high) is displayed as white.

Values in between are displayed as intermediate shades of gray. The Image Viewer uses the

default number of gray levels. If you use an empty matrix ([]) for [low high], the Image

Viewer uses [min(I(:)) max(I(:))]; the minimum value in I is displayed as black, and the

maximum value is displayed as white.

5

imtool(RGB) displays the truecolor image RGB in the Image Viewer.

imtool(BW) displays the binary image BW in the Image Viewer. Pixel values of 0 display as
black; pixel values of 1 display as white.

imtool(X,map) displays the indexed image X with colormap map in the Image Viewer.

imtool(filename) displays the image contained in the graphics file filename in the Image
Viewer. The file must contain an image that can be read by imread or dicomread or a reduced

resolution dataset (R-Set) created by rsetwrite. If the file contains multiple images, the first
one is displayed. The file must be in the current directory or on the MATLAB path.

imtool close all closes all open Image Viewers.

Geometric Transformation, Spatial Referencing, and Image Registration
Scale, rotate, perform other N-D transformations, provide spatial information, align images
using automatic or control point registration

Geometric Transformations
Resize, rotate, and crop images; perform geometric transformation of multidimensional
arrays

Functions

imcrop Crop image

imresize Resize image

imrotate Rotate image

imtranslate Translate image

impyramid Image pyramid reduction and expansion

imwarp Apply geometric transformation to image

makeresampler Create resampling structure

tformfwd Apply forward spatial transformation

tforminv Apply inverse spatial transformation

checkerboard Create checkerboard image

imresize

Resize image

Syntax

B = imresize(A, scale)

gpuarrayB = imresize(gpuarrayA,scale)
B = imresize(A, [numrowsnumcols])

Description
B = imresize(A, scale) returns image B that is scale times the size of A. The input image A
can be a grayscale, RGB, or binary image. If scale is between 0 and 1.0, B is smaller than A.

If scale is greater than 1.0, B is larger than A. By default, imresize uses bicubic interpolation.

gpuarrayB = imresize(gpuarrayA,scale) performs the resize operation on a GPU. The input
image and the output image are gpuArrays. When used with gpuArrays, imresize only

supports cubic interpolation and always performs antialiasing. This syntax requires the

Parallel Computing Toolbox™.

6

B = imresize(A, [numrowsnumcols]) returns image B that has the number of rows and
columns specified by [numrowsnumcols]. Either numrows or numcols may be NaN, in which

case imresize computes the number of rows or columns automatically to preserve the image
aspect ratio.

Spatial Referencing
Associate spatial information with an image, use this information in image processing
operations

Functions

imwarp Apply geometric transformation to image

imregister Intensity-based image registration

imregtform Estimate geometric transformation that aligns two 2-D or 3-D images

imshow Display image

imshowpair Compare differences between images

imfuse Composite of two images

imregister

Intensity-based image registration collapse all in page

Syntax

moving_reg = imregister(moving,fixed,transformType,optimizer,metric) example
[moving_reg,R_reg] =
imregister(moving,Rmoving,fixed,Rfixed,transformType,optimizer,metric)

Description
moving_reg = imregister(moving,fixed,transformType,optimizer,metric) transforms the 2-D

or 3-D image, moving, so that it is registered with the reference image, fixed. Both moving

and fixed images must be of the same dimensionality, either 2-D or 3-D. transformType is a

character string that defines the type of transformation to perform. optimizer is an object that

describes the method for optimizing the metric and metric is an object that defines the

quantitative measure of similarity between the images to optimize. Returns the aligned

image, moving_reg.

[moving_reg,R_reg] =

imregister(moving,Rmoving,fixed,Rfixed,transformType,optimizer,metric) transforms the

spatially referenced image moving so that it is registered with the spatially referenced image

fixed. Rmoving and Rfixed are spatial referencing objects that describe the world coordinate

limits and resolution of moving and fixed.

Image Enhancement

Contrast adjustment, morphological filtering, deblurring, and other image enhancement tools

Contrast Adjustment

Contrast adjustment, histogram equalization, decorrelation stretching

Functions

imadjust Adjust image intensity values or color map

imcontrast Adjust Contrast tool

imsharpen Sharpen image using unsharp masking

histeq Enhance contrast using histogram equalization

7

adapthisteq Contrast-limited adaptive histogram equalization (CLAHE)

stretchlim Find limits to contrast stretch image

intlut Convert integer values using lookup table

imnoise Add noise to image

imadjust

Adjust image intensity values or colormapcollapse all in page

Syntax

J = imadjust(I) example

J = imadjust(I,[low_in; high_in],[low_out; high_out])

J = imadjust(I,[low_in; high_in],[low_out; high_out],gamma)
newmap = imadjust(map,[low_in; high_in],[low_out; high_out],gamma)

Description
J = imadjust(I) maps the intensity values in grayscale image I to new values in J such that 1%

of data is saturated at low and high intensities of I. This increases the contrast of the output
image J. This syntax is equivalent to imadjust(I,stretchlim(I)).

This function supports code generation

J = imadjust(I,[low_in; high_in],[low_out; high_out]) maps the values in I to new values in J
such that values between low_in and high_in map to values between low_out and high_out.

Note If high_out is less than low_out, imadjust reverses the output image, as in a
photographic negative.

J = imadjust(I,[low_in; high_in],[low_out; high_out],gamma) maps the values in I to new

values in J, where gamma specifies the shape of the curve describing the relationship between
the values in I and J.

newmap = imadjust(map,[low_in; high_in],[low_out; high_out],gamma) transforms the m-

by-3 array colormap associated with an indexed image. low_in, high_in, low_out, and

high_out must be 1-by-3 vectors. gamma can be a 1-by-3 vector that specifies a unique

gamma value for each channel or a scalar that specifies the value used for all three channels.

The rescaled colormapnewmap is the same size as map.

imnoise

Add noise to imagecollapse all in page

Syntax

J = imnoise(I,type)

J = imnoise(I,type,parameters)

J = imnoise(I,'gaussian',M,V)

J = imnoise(I,'localvar',V)
J = imnoise(I,'localvar',image_intensity,var)

J = imnoise(I,'poisson')

J = imnoise(I,'salt&pepper',d)

J = imnoise(I,'speckle',v)
gpuarrayJ = imnoise(gpuarrayI,___)

8

Description
J = imnoise(I,type) adds noise of a given type to the intensity image I. type is a string that

specifies any of the following types of noise. Note that certain types of noise support
additional parameters. See the related syntax.

Value Description

'gaussian' Gaussian white noise with constant mean and variance

'localvar' Zero-mean Gaussian white noise with an intensity-dependent variance

'poisson' Poisson noise

'salt & pepper' On and off pixels

'speckle' Multiplicative noise

J = imnoise(I,type,parameters) Depending on type, you can specify additional parameters to

imnoise. All numerical parameters are normalized— they correspond to operations with
images with intensities ranging from 0 to 1.

J = imnoise(I,'gaussian',M,V) adds Gaussian white noise of mean m and variance v to the
image I. The default is zero mean noise with 0.01 variance.

J = imnoise(I,'localvar',V) adds zero-mean, Gaussian white noise of local variance V to the
image I. V is an array of the same size as I.

J = imnoise(I,'localvar',image_intensity,var) adds zero-mean, Gaussian noise to an image I,

where the local variance of the noise, var, is a function of the image intensity values in I. The

image_intensity and var arguments are vectors of the same size, and

plot(image_intensity,var) plots the functional relationship between noise variance and image

intensity. The image_intensity vector must contain normalized intensity values ranging from

0 to 1.

J = imnoise(I,'poisson') generates Poisson noise from the data instead of adding artificial
noise to the data. If I is double precision, then input pixel values are interpreted as means of

Poisson distributions scaled up by 1e12.

J = imnoise(I,'salt&pepper',d) adds salt and pepper noise to the image I, where d is the noise
density. This affects approximately d*numel(I) pixels. The default for d is 0.05.

J = imnoise(I,'speckle',v) adds multiplicative noise to the image I, using the equation J =

I+n*I, where n is uniformly distributed random noise with mean 0 and variance v. The
default for v is 0.04.

Note The mean and variance parameters for 'gaussian', 'localvar', and 'speckle' noise types are

always specified as if the image were of class double in the range [0, 1]. If the input image is

of class uint8 or uint16, the imnoise function converts the image to double, adds noise

according to the specified type and parameters, and then converts the noisy image back to the

same class as the input.

9

gpuarrayJ = imnoise(gpuarrayI,___) adds noise to the gpuArray intensity image gpuarrayI,
performing the operation on a GPU. Returns a gpuArray image J of the same class. This

syntax requires the Parallel Computing Toolbox™.

Image Filtering
Convolution and correlation, predefined and custom filters, nonlinear filtering, edge-
preserving filters.

Functions

imfilter N-D filtering of multidimensional images

imgaussfilt 2-D Gaussian filtering of images

imgaussfilt3 3-D Gaussian filtering of 3-D images

fspecial Create predefined 2-D filter

imguidedfilter Guided filtering of images

normxcorr2 Normalized 2-D cross-correlation

wiener2 2-D adaptive noise-removal filtering

medfilt2 2-D median filtering

ordfilt2 2-D order-statistic filtering

stdfilt Local standard deviation of image

rangefilt Local range of image

entropyfilt Local entropy of grayscale image

imgaussfilt

2-D Gaussian filtering of imagescollapse all in page

Syntax

B = imgaussfilt(A)

B = imgaussfilt(A,sigma)

B = imgaussfilt(___,Name,Value,...)
gpuarrayB = imgaussfilt(gpuarrayA,___) example

Description
B = imgaussfilt(A) filters image A with a 2-D Gaussian smoothing kernel with standard
deviation of 0.5. Returns B, the filtered image.

B = imgaussfilt(A,sigma) filters image A with a 2-D Gaussian smoothing kernel with
standard deviation specified by sigma.

Morphological Operations

Dilate, erode, reconstruct, and perform other morphological operations

Functions

Bwhitmiss Binary hit-miss operation

Bwmorph Morphological operations on binary images

bwulterode Ultimate erosion

bwareaopen Remove small objects from binary image

Imbothat Bottom-hat filtering

imclearborder Suppress light structures connected to image border

Imclose Morphologically close image

Imdilate Dilate image

10

Imerode Erode image

imextendedmax Extended-maxima transform

imextendedmin Extended-minima transform

Imfill Fill image regions and holes

Imhmax H-maxima transform

Imhmin H-minima transform

imimposemin Impose minima

Imopen Morphologically open image

imreconstruct Morphological reconstruction

imregionalmax Regional maxima

imregionalmin Regional minima

imtophat Top-hat filtering

watershed Watershed transform

imerode

Erode image

Syntax

IM2 = imerode(IM,SE)
IM2 = imerode(IM,NHOOD)

Description
IM2 = imerode(IM,SE) erodes the grayscale, binary, or packed binary image IM, returning

the eroded image IM2. The argument SE is a structuring element object or array of
structuring element objects returned by the strel function.

If IM is logical and the structuring element is flat, imerode performs binary erosion;

otherwise it performs grayscale erosion. If SE is an array of structuring element objects,
imerode performs multiple erosions of the input image, using each structuring element in SE

in succession.

imdilate

Dilate imagecollapse all in page

Syntax

IM2 = imdilate(IM,SE)
IM2 = imdilate(IM,NHOOD)

Description
IM2 = imdilate(IM,SE) dilates the grayscale, binary, or packed binary image IM, returning

the dilated image, IM2. The argument SE is a structuring element object, or array of
structuring element objects, returned by the strel function.

If IM is logical and the structuring element is flat, imdilate performs binary dilation;

otherwise, it performs grayscale dilation. If SE is an array of structuring element objects,

imdilate performs multiple dilations of the input image, using each structuring element in
succession.

This function supports code generation

11

IM2 = imdilate(IM,NHOOD) dilates the image IM, where NHOOD is a matrix of 0's and 1's
that specifies the structuring element neighborhood. This is equivalent to the syntax

imdilate(IM,strel(NHOOD)). The imdilate function determines the center element of the
neighborhood by floor((size(NHOOD)+1)/2).

Image Analysis
Object Analysis

Functions

bwboundaries Trace region boundaries in binary image

bwtraceboundary Trace object in binary image

visboundaries Plot region boundaries

edge Find edges in intensity image

imfindcircles Find circles using circular Hough transform

viscircles Create circle

corner Find corner points in image

cornermetric Create corner metric matrix from image

imgradient Gradient magnitude and direction of an image

imgradientxy Directional gradients of an image

hough Hough transform

houghlines Extract line segments based on Hough transform

houghpeaks Identify peaks in Hough transform

edge

Find edges in intensity imagecollapse all in page

Syntax

BW = edge(I)

BW = edge(I,method) example

BW = edge(I,method,threshold)
BW = edge(I,method,threshold,direction)

Description
BW = edge(I) returns a binary image BW containing 1s where the function finds edges in the
input image I and 0s elsewhere. By default, edge uses the Sobel edge detection method.

This function supports code generation

BW = edge(I,method) detects edges in image I, where method specifies the edge detection
method used.

BW = edge(I,method,threshold) detects edges in image I, where threshold specifies the
sensitivity threshold. edge ignores all edges that are not stronger than threshold.

BW = edge(I,method,threshold,direction) detects edges in image I, where direction specifies

the direction in which the function looks for edges in the image: horizontally, vertically, or in
both directions. Used only with the Sobel and Prewitt methods.

Region and Image Properties

Get information about the objects in an image

12

Functions

regionprops Measure properties of image regions

bwarea Area of objects in binary image

bwareafilt Extract objects from binary image by size

bwconncomp Find connected components in binary image

bwconvhull Generate convex hull image from binary image

bwdist Distance transform of binary image

bwpropfilt Extract objects from binary image using properties

bwselect Select objects in binary image

imhist Histogram of image data

imhist

Histogram of image datacollapse all in page

Syntax

imhist(I) example

imhist(I,n)

imhist(X,map)
[counts,binLocations] = imhist(I)

Description
imhist(I) calculates the histogram for the intensity image I and displays a plot of the
histogram. The number of bins in the histogram is determined by the image type.

This function supports code generation (see Tips).

imhist(I,n) calculates the histogram, where n specifies the number of bins used in the
histogram. n also specifies the length of the colorbar displayed at the bottom of the histogram

plot.

imhist(X,map) displays a histogram for the indexed image X. This histogram shows the
distribution of pixel values above a colorbar of the colormap map. The colormap must be at

least as long as the largest index in X. The histogram has one bin for each entry in the

colormap.

[counts,binLocations] = imhist(I) returns the histogram counts in counts and the bin locations
in binLocations so that stem(binLocations,counts) shows the histogram. For indexed images,

imhist returns the histogram counts for each colormap entry. The length of counts is the same

as the length of the colormap.

Image Quality
Mean-squared error, peak signal-to-noise ratio, and Structural Similarity Index (SSIM) image
quality metrics

Functions

immse Mean-squared error

psnr Peak Signal-to-Noise Ratio (PSNR)

ssim Structural Similarity Index (SSIM) for measuring image quality

Image Segmentation

Segment images

13

Functions

Activecontour Segment image into foreground and background using active contour

Imsegfmm Binary image segmentation using Fast Marching Method

imseggeodesic Segment image into two or three regions using geodesic distance-based
 color segmentation

gradientweight Calculate weights for image pixels based on image gradient

graydiffweight Calculate weights for image pixels based on grayscale intensity

 difference

Image Transforms

Perform Fourier, Discrete Cosine, Radon, and Fan-beam transforms

Functions

Bwdist Distance transform of binary image

bwdistgeodesic Geodesic distance transform of binary image

Graydist Gray-weighted distance transform of grayscale image

Hough Hough transform

dct2 2-D discrete cosine transform

dctmtx Discrete cosine transform matrix

idct2 2-D inverse discrete cosine transform

fft2 2-D fast Fourier transform

ifft2 2-D inverse fast Fourier transform

ifftshift Inverse FFT shift

Color

Color space conversions, support for International Color Consortium (ICC) profiles

Various color spaces exist because they present color information in ways that make certain

calculations more convenient or because they provide a more intuitive way to identify colors.

The toolbox represents colors as RGB values and provides tools for converting color data

from one color space to another. The toolbox also support International Color Consortium

(ICC) profiles for describing colors.

Functions

rgb2lab Convert RGB to CIE 1976 L*a*b*

rgb2ntsc Convert RGB color values to NTSC color space

rgb2xyz Convert RGB to CIE 1931 XYZ

rgb2ycbcr Convert RGB color values to YCbCr color space

lab2rgb Convert CIE 1931 L*a*b* to RGB

lab2xyz Convert CIE 1931 L*a*b* to CIE 1931 XYZ

xyz2lab Convert CIE 1931 XYZ to CIE 1976 L*a*b*

xyz2rgb Convert CIE 1931 XYZ to RGB

ycbcr2rgb Convert YCbCr color values to RGB color space

ntsc2rgb Convert NTSC values to RGB color space

14

Practical 2

Aim: To write a program for implementing Image Negatives.

Source Code:

clear all;

close all;

clc;

imx=imread('D:\Photos\me.jpg');

im=rgb2gray(imx);

siz=size(im);
L=max(max(im));

for i=1:siz(1,1)

for j=1:siz(1,2)

im1(i,j)=L-im(i,j);

end

end

figure(1)

subplot(1,3,1),imshow(imx)

title('Input Image');

subplot(1,3,2),imshow(im)

title('Grayed Image');

subplot(1,3,3),imshow(im1)
title('Output Image');

15

Practical 2

1). Aim: To write a program for implementing Log Transformations.

Source Code:

clear all;

close all;

clc;

im2=imread('H:\DIPimages\2nd\3rd\4th\Fig0102(1922 digital image).tif');

im=double(im2);

siz=size(im);

for i=1:siz(1,1)

for j=1:siz(1,2)

s=1+im(i,j);

im1(i,j)=1 * log10(s);

end
end

figure(1)

subplot(1,3,1),imshow(im2)

title('Input Image');

subplot(1,3,2),imshow(im1)
title('Output Image');

16

2). Aim: To write a program for implementing Power Law (Gamma) Transformations.

Source Code:

clear all;

close all;
clc;

im2=imread('H:\DIP3E_CH02_Original_Images\DIP3E_Original_Images_CH02\fractured_s

pine.tif');

im=double(im2);

siz=size(im);

for i=1:siz(1,1)

for j=1:siz(1,2)
im1(i,j)=0.09*(im(i,j)^0.9);

end

end

figure(1)

subplot(1,3,1),imshow(im2)

title('Input Image');

subplot(1,3,2),imshow(im1)
title('Output Image');

17

18

3). Aim: To write a program to implement Bit Plane

Slicing Source Code:

clc;

clear all;
close all;

imx= imread('H:\bitplane.jpg');

imm=rgb2gray(imx);

[row,col,plane]=size(imm);

imm=imm(:,:,1);

im=zeros(row,col,8);

for k=1:8

for i=1:row
for j=1:col

im(i,j,k)=bitget(imm(i,j),k);

ifim(i,j,k)==1;

im(i,j,k)=255;

end

end

end

end

str = 'PLANE -- ';

for k=1:8

subplot(3,3,k)

imshow(im(:,:,k));

stri = strcat(str, num2str(k));

title(stri);

end

subplot(3,3,9);

imshow(imm);
title('Original Image');

19

20

Practical 3

1). Aim: To write a program to implement spatial filter with dynamic mask (average

filter)

Source Code:

clc;

close all;

clear all;

% a=[1,2,3,4,5;4,5,6,7,8;9,10,11,12,13;10,11,12,13,14]

a1=imread('H:\image.tif');

%a1=rgb2gray(b1);

% imshow(a);

a=im2double(a1);

in=input('Enter the input of mask ');

%performing on a mask with all co-efficient values as 1.

for m1=1:in

for n1=1:in
w(m1,n1)=1;

end

end

z1=0;

[m,n]=size(a);

[p,q]=size(w);

p1=in/2;

p1=floor(p1);

p2=p1;

g=padarray(a,[p1,p1]);

for i=1:m

for j=1:n

img(i,j)=0;

for r1=1:in

for r2=1:in

img(i,j)=img(i,j)+ g(i+r1-1,j+r2-1)*w(r1,r2);

end

end

end
end

for i=1:m

for j=1:n

res(i,j)=img(i,j)/(p*q);

%if co-efficient values are not all 1s then divide by the summation of all co-efficients

end

end

figure(1)

subplot(1,2,1),imshow(a)

title('Input Image');
subplot(1,2,2),imshow(res)

21

title('Filered Image');

2). Aim: To write a program to implement median filter
Source Code:

clear all;

clc;

close all;

im = imread('D:\1stSem_MTech\Digital_Image_Processing\mefi.tif'); b

= double(im);

c = padarray(b,[1,1],0,'both');
d = c;

[row col] = size(c);

for i = 2:row-1

for j = 2:col-1

a1 = [c(i-1,j-1) c(i-1,j) c(i-1,j+1) c(i,j-1) c(i,j) c(i,j+1) c(i+1,j-1) c(i+1,j) c(i+1,j+1)];

a2 = sort(a1);

med = a2(5);

d(i,j) = med;

end
end

22

figure(1)

subplot(1,2,1),imshow(uint8(im))

title('Input Image');

subplot(1,2,2),imshow(uint8(d))
title('Median Filtered Image');

23

Practical 4

Aim: Image Contrast Enhancement Using Histogram Equalization

Abstract - General framework based on histogram equalization for image contrast

enhancement is discussed. In this framework, contrast enhancement is posed as an

optimization problem that minimizes a cost function. Histogram equalization is an effective

technique for contrast enhancement. However, conventional histogram equalization (HE)

usually results in excessive contrast enhancement, which in turn gives the processed image an

unnatural look and creates visual artifacts. By introducing specifically designed penalty

terms, the level of contrast enhancement can be adjusted; noise robustness, white/black

stretching and mean-brightness preservation may easily be incorporated into the optimization.

Keywords: Histogram equalization, histogram modification, image/video quality

enhancement.

1. INTRODUCTION

Contrast enhancement plays a crucial role in image processing applications, such as

digital photography, medical image analysis, remote sensing, LCD display

processing, and scientific visualization. Image enhancement is a technique which

reduces image noise, remove artifacts, and preserve details. Its purpose is to amplify

certain image features for analysis, diagnosis and display. Contrast enhancement

increases the total contrast of an image by making light colors lighter and dark colors

darker at the same time. It does this by setting all color components below a specified

lower bound to zero, and all color components above a specified upper bound to the

maximum intensity (that is, 255). Color components between the upper and lower

bounds are set to a linear ramp of values between 0 and 255. Because the upper bound

must be greater than the lower bound, the lower bound must be between 0 and 254,

and the upper bound must be between 1 and 255. Some users describe the enhanced

image that if a curtain of fog has been removed from the image [1] . There are several

reasons for an image/video to have poor contrast:  the poor quality of the used

imaging device,  lack of expertise of the operator, and The adverse external

conditions at the time of acquisition. These effects result in under-utilization of the

offered dynamic range. As a result, such images and videos may not reveal all the

details in the captured scene, and may have a washed-out and unnatural look.

2. IMAGE ENHANCEMENT

Image enhancement processed consist of a collection of techniques that seek to

improve the visual appearance of an image or to convert the image to a form better

suited for analysis by a human or machine[2] . Enhancement of an image can be

implemented by using different operations of brightness increment, sharpening,

blurring or noise removal. Unfortunately, there is no general theory for determining

what ‗good‘ image enhancement, when it comes to human perception. If it looks

good, it is good! While categorizing Image Enhancement operations can be divided in

two categories:

24

2.1 TECHNIQUES OF CONTRAST ENHANCEMENT

These techniques can be broadly categorized into two groups:

 direct methods and,

Indirect methods.

2.1.1

Direct method In direct method of contrast enhancement, a contrast measure is first

defined, which is then modified by a mapping function to generate the pixel value of the

enhanced image. Various mapping functions such as the square root function, the

exponential function, etc., have been introduced for the contrast measure modification.

However, these functions do not produce satisfactory contrast enhancement results and

are usually sensitive to noise and digitization effects [4]. In addition, they are

computationally complex from the point of view of implementation. The polynomial

function is ready to implement on digital computers and provides very satisfactory

contrast enhancement.

2.1.2

Indirect method Indirect methods, on the other hand, improve the contrast through
exploiting the underutilized regions of the dynamic range without defining a specific

contrast term. Most methods in the literature fall into the second group [4]. Indirect
methods can further be divided into several subgroups:

 techniques that decompose an image into high and low frequency signals for
manipulation, e.g., homomorphic filtering,

 Histogram modification techniques, and
 Transform-based techniques. Out of these three subgroups, the second subgroup
received the most attention due to its straightforward and intuitive implementation
qualities.



3. HISTOGRAM EQUALIZATION

Contrast enhancement techniques in the second subgroup modify the image through some

pixel mapping such that the histogram of the processed image is more spread than that of

the original image. Techniques in this subgroup either enhance the contrast globally or

locally. Ifa single mapping derived from the image is used then it is a global method; if

the neighborhood of each pixel is used to obtain a local mapping function then it is a local

method. Using a single global mapping cannot (specifically) enhance the local contrast

[5], [6]. One of the most popular global contrast enhancement techniques is histogram

equalization (HE). The histogram in the context of image processing is the operation by

which the occurrence of each intensity value in the image is shown. Normally, the

histogram is a graph showing the number of pixels in an image at each different intensity

value found in that image. For an 8- bit grayscale image there are 256 different possible

intensities, and so the histogram will graphically display 256 numbers showing the

distribution of pixels amongst those grayscale values [7]. Histogram equalization is the

technique by which the dynamic range of the histogram of an image is increased. HE

assigns the intensity values of pixels in the input image such that the output image

contains a uniform distribution of intensities. It improves contrast and the goal of HE is to

25

obtain a uniform histogram. This technique can be used on a whole image or just on a

part of an image. This method usually increases the global contrast of many images,

especially when the usable data of the image is represented by close contrast values.

Through this adjustment, the intensities can be better distributed on the histogram. This

allows for areas of lower local contrast to gain a higher contrast without affecting the

global contrast. Histogram equalization accomplishes this by effectively spreading out the

most frequent intensity values. The method is useful in images with backgrounds and

foregrounds that are both bright or both dark. In particular, the method can lead to better

views of bone structure in x-ray images, and to better detail in photographs that are over

or under-exposed.

 Advantage: A key advantage of the method is that it is a fairly straightforward
technique and an invertible operator. So in theory, if the histogram equalization
function is known, then the original histogram can be recovered.

 Disadvantage: A disadvantage of the method is that it is indiscriminate. It may increase
the contrast of background noise, while decreasing the usable signal.

3.1 HE

often produces unrealistic effects in photographs; however it is very useful for scientific

images like thermal, satellite or x-ray images, often the same class of images that user

would apply false-color to. Also histogram equalization can produce undesirable effects

(like visible image gradient) when applied to images with low color depth. For example

if applied to 8-bit image displayed with 8-bit gray-scale palette it will further reduce

color depth (number of unique shades of gray) of the image. Histogram equalization will

work the best when applied to images with much higher color depth than palette size,

like continuous data or 16-bit grayscale images. Histogram equalization is a specific

case of the more general class of histogram remapping methods. These methods seek to

adjust the image to make it easier to analyze or improve visual quality. The above

describes histogram equalization on a grey-scale image. However it can also be used on

color images by applying the same method separately to the Red, Green and Blue

components of the RGB color values of the image. Still, it should be noted that applying

the same method on the Red, Green, and Blue components of an RGB image may yield

dramatic changes in the image's color balance since the relative distributions of the color

channels change as a result of applying the algorithm. However, if the image is first

converted to another color space, Lab color space, or HSL/HSV color space in

particular, then the algorithm can be applied to the luminance or value channel without

resulting in changes to the hue and saturation of the image [3]. The histogram is a

discrete function h(r=k) = nk , Where nk is the number of pixels in the image having

gray level k It is a common practice to normalize a histogram by dividing each of its

values by the total number of pixels in the image (n) p(r=k) = nk/n , k=0, 1, …, L-1

Where p(r=k) is an estimate of the probability of occurrence of gray level k [8].

Following graph

4. CONCLUSION

The contrast of the image can be improved without introducing visual artifacts that

decrease the visual quality of an image and cause it to have an unnatural look. The

experimental results show the effectiveness of the algorithm in comparison to other
contrast enhancement algorithms. Obtained images are visually pleasing, artifact free, and

natural looking. A desirable feature of this paper is that it does not introduce flickering.

26

This is mainly due to the fact that the method uses the input (conditional) histogram,
which does not change significantly within the same scene, as the primary source of

information. This method is applicable to a wide variety of images. It also offers a level
of controllability and adaptability through which different levels of contrast enhancement,

from histogram equalization to no contrast enhancement, can be achieved.

5. REFERENCES

1. G.de Haan, ―Video Processing for Multimedia Systems‖, Eindhoven, The Netherlands,

2000.

2. http://www.cromwell-intl.com/3d/histogram/
3. J.A. Stark, ―Adaptive image contrast enhancement using generalizations of histogram

equalization‖, IEEE Trans. Image Process, vol. 9, no. 5, pp. 889-896, May 2000. 4. J.-Y.

Kim, L.-S Kim, and S.-H. Hwang, ‖An advanced contrast enhancement using partially
overlapped sub-block histogram equalization‖, IEEE Trans. Circuits Syst. Video Technol,

vol. 11, no.
4, pp. 475-484, Apr. 2001.

5. N.R.Mokhtar, Nor HazlynaHarun, M.Y. Mashor, H.Roseline, Nazahaha Mustafa,

R.Adollah, H. Adilah, N.F.ModhNasir, ―Image Enhancement Techniques Using Local,
Global, Bright, Dark and Partial Contrast Stretching‖, Proceedings of the world Congress
on Engineering 2009 vol. I, WCE 2209, July 1-3, 2009, London U.K.
6. Rafael C. Gonzalez, Richard E. Woods, ―Digital Image Processing‖, Pearson

Education, Inc.

7. Rafael C. Gonzalez, Richard E. Woods,‖Digital Image Processing Using MATLAB‖,

Pearson Education, Inc.

8. TarikArici, SalihDikbas, Member, IEEE, and YucelAltunbasak, Senior Member, IEEE,
―A Histogram Modification Framework and Its Application for Image Contrast
enhancement‖, IEEE Transactions on Image Processing, VOL.18, No. 9, Sept. 2009.

27

Practical 5

AIM : Study of Various Edge Detector (Sobel, canny etc.) , implement any one edge

detector with any soft computing technique (FUZZY,NN,GA).and Compare the results.

INTRODUCTION

Edge detection refers to the process of identifying and locating sharp discontinuities in an

image. The discontinuities are abrupt changes in pixel intensity which characterize

boundaries of objects in a scene. Classical methods of edge detection involve convolving the

image with an operator (a 2-D filter), which is constructed to be sensitive to large gradients in

the image while returning values of zero in uniform regions. There are an extremely large

number of edge detection operators available, each designed to be sensitive to certain types of

edges. Variables involved in the selection of an edge detection operator include Edge

orientation, Noise environment and Edge structure. The geometry of the operator determines

a characteristic direction in which it is most sensitive to edges. Operators can be optimized to

look for horizontal, vertical, or diagonal edges. Edge detection is difficult in noisy images,

since both the noise and the edges contain high frequency content. Attempts to reduce the

noise result in blurred and distorted edges. Operators used on noisy images are typically

larger in scope, so they can average enough data to discount localized noisy pixels. This

results in less accurate localization of the detected edges. Not all edges involve a step change

in intensity. Effects such as refraction or poor focus can result in objects with boundaries

defined by a gradual change in intensity. The operator needs to be chosen to be responsive to

such a gradual change in those cases. So, there are problems of false edge detection, missing

true edges, edge localization, high computational time and problems due to noise etc.

Therefore, the objective is to do the comparison of various edge detection techniques and

analyze the performance of the various techniques in different conditions. There are many

ways to perform edge detection. However, the majority of different methods may be grouped

into two categories:

Gradient based Edge Detection:

The gradient method detects the edges by looking for the maximum and minimum in the

first derivative of theimage.

Laplacian based Edge Detection:

The Laplacian method searches for zero crossings in the second derivative of the image to

find edges. An edgehas the one-dimensional shape of a ramp and calculating the derivative

of the image can highlight its location.

Edge Detection Operators:

1. Sobel Operator:
The operator consists of a pair of 3×3 convolution kernels as shown in Figure 1. One kernel
is simply the other rotated by 90°.

28

These kernels are designed to respond maximally to edges running vertically and horizontally

relative to the pixel grid, one kernel for each of the two perpendicular orientations. The

kernels can be applied separately to the input image, to produce separate measurements of the

gradient component in each orientation (call these Gx and Gy). These can then be combined

together to find the absolute magnitude of the gradient at each point and the orientation of

that gradient [3]. The gradient magnitude is given byTypically, an approximate magnitude is

computed using:
G = Gx + Gy which is much faster to compute.

2. Robert‟s cross operator:
The Roberts Cross operator performs a simple, quick to compute, 2-D spatial gradient

measurement on an image. Pixel values at each point in the output represent the estimated
absolute magnitude of the spatial gradient of the input image at that point. The operator

consists of a pair of 2×2 convolution kernels as shown in Figure. One kernel is simply the
other rotated by 90°

3. Prewitt‟s operator:
Prewitt operator [5] is similar to the Sobel operator and is used for detecting vertical and
horizontal edges in images.

29

Implementation using MATLAB inbuilt Prewitt, SObel, Roberts Operators

30

Implemented with developed Sobel operator:

31

% read image
lena = imread('test01.jpg');
% convert it into double

type lena = double(lena);
% get the dimensional information

height = size(lena, 1);
width = size(lena, 2);

channel = size(lena, 3);

% output image
lenaOutput = zeros(size(lena));
% kernels
Gx = [1 2 1; 0 0 0; -1 -2 -1];
Gy = [1 0 -1; 2 0 -2; 1 0 -1];
% compute for every pixel

for i = 2 : height - 1
for j = 2 : height - 1
for k = 1 : channel
tempLena = lena(i - 1 : i + 1, j - 1 : j + 1, k);

x = sum(sum(Gx .* tempLena));
y = sum(sum(Gy .* tempLena));

pixValue = sqrt(x^2 + y^2);

lenaOutput(i, j, k) = pixValue;
end

end

end

% display the processed image
lenaOutput = uint8(lenaOutput);
figure;
imshow(lenaOutput);
title('Sobel Edge Detection');
% write the output to disk

imwrite(lenaOutput, 'lenaOutput.jpg', 'jpg')

% original image
figure;
imshow(uint8(lena));
title('Original Image');

32

Implemented using Fuzzy logic (FIS)

clc
close all
clear all
k=readfis('ed');
% [filename path]=uigetfile('*.*','Select the

image') a=imread('peppers.png');
a=double(a);

d=a;
[r,c]=size(a);
r1=r-1;
c1=c-1;
for i=1:1:r1
for j=1:1:c1

b=a(i:i+1,j:j+1);
b=b';
b=b(:);

%i=[255 255 255 0];
e=evalfis(b,k);
e=round(e);
d(i+1,j+1)=e;
end
end

edge1=d;

33

edge1(edge1>134)=0;
edge1(edge1<130)=0;
edge1(edge1~=0)=1;
figure
imshow(uint8(a))
title('Original image')
figure
imshow(edge1)
title('Edge detection using fuzzy logic')

X axis Image gradient

34

Y axis image gradient

35

FIS

36

s

37

Observation:

 Results of several operators were compared visually and with help of Regionprops

function in MATLAB.


 Among gradient operators, Prewitt‘s results were found better than Sobel and Roberts.

Gradient operators are noise sensitive.


 Operator implemented using Fuzzy logic was able to give even better result with

sharp edges and noise reduced.

38

Practical 6

1).Aim: write a program to implement erosion on an image using „imerode‟ function.

• Description:Erosion is the set of all points in the image, where the structuring

element “fits into”.

• Consider each foreground pixel in the input image

– If the structuring element fits in, write a “1” at the origin of the structuring

element!

• Simple application of pattern matching

• Input:

– Binary Image (Gray value)

– Structuring Element, containing only 1s!

Source Code:

close all;

clear all;
clc;
originalBW = imread('J:\DIPBOOK\DIP_morphological\erode.tif'); se

= strel('line',11,90);

erodedBW = imerode(originalBW,se);

figure(1),subplot(1,2,1), imshow(originalBW),title('Original Image');
figure(1),subplot(1,2,2), imshow(erodedBW),title('Eroded Image');

39

2). Aim: write a program to implement dilation on an image using „imdilate‟ function.

• Description:Dilation is the set of all points in the image, where the structuring

element “touches” the foreground.

• Consider each pixel in the input image

– If the structuring element touches the foreground image, write a “1” at the

origin of the structuring element!

• Input:

– Binary Image

– Structuring Element, containing only 1s!!

Source Code:

close all;

clear all;

clc;

originalBW = imread('J:\DIPBOOK\DIP_morphological\erode.tif'); se

= strel('line',11,90);

dilatedBW = imdilate(originalBW,se);

figure(1),subplot(1,2,1), imshow(originalBW),title('Original Image');
figure(1),subplot(1,2,2), imshow(dilatedBW),title('Dilated Image');

40

3). Aim:write a program to implement opening operation on an image using

„imopen‟ function.
• Description:Similar to Erosion

– Spot and noise removal

– Less destructive

• Erosion next dilation

• the same structuring element for both operations.

• Input:

– Binary Image

– Structuring Element, containing only 1s!

Source Code:

%opening operation

%erode first and then dilate
close all;

clear all;

clc;
originalImg=imread('J:\DIPBOOK\DIP_morphological\erode.tif');

sr=strel('square',5);

opened=imopen(originalImg,sr);

figure(1),subplot(1,2,1), imshow(originalImg),title('Original Image');
figure(1),subplot(1,2,2), imshow(opened),title('Opened Image');

41

4). Aim:write a program to implement closing operation on an image using „imclose‟

function.

• Description:Similar to Dilation

– Removal of holes

– Tends to enlarge regions, shrink background

• Closing is defined as a Dilatation, followed by an Erosionusing the same

structuring element for both operations.

• Dilation next erosion!

• Input:

– Binary Image

– Structuring Element, containing only 1s!

Source Code:

%closing operation

%dilate first and then erode

close all;

clear all;

clc;

originalImg=imread('J:\DIPBOOK\DIP_morphological\erode.tif');

sr=strel('square',25);

closed=imclose(originalImg,sr);
figure(1),subplot(1,2,1), imshow(originalImg),title('Original Image');
figure(1),subplot(1,2,2), imshow(closed),title('Closed Image');

42

5). Aim: To write a program to implement binary hit miss operation on an image using

„bwhitmiss‟ function.

• Description:Used tolook for particular patterns of foreground and background

pixels

• Very simple object recognition

• All other morphological operations can be derived from it!!

• Input:

– Binary Image

– Structuring Element, containing 0s and 1s!!

Source Code:

close all;

clear all;
clc;

bw = [0 0 0 0 0 0

0 0 1 1 0 0

0 1 1 1 1 0

0 1 1 1 1 0

0 0 1 1 0 0

0 0 1 0 0 0]

interval = [0 -1 -1

1 1 -1

0 1 0]

bw2 = bwhitmiss(bw,interval)

Output:

bw =

0 0 0 0 0 0

0 0 1 1 0 0

0 1 1 1 1 0

0 1 1 1 1 0

0 0 1 1 0 0

0 0 1 0 0 0

interval =

0 -1 -1

1 1 -1
0 1 0

43

bw2 =

0 0 0 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

44

Practical 7

1). Aim: Separate R, G and B planes from an RGB image.

Source Code:

closeall;

clearall;

clc;

i1 = imread('D:\Photos\blossom1.jpg');

r1 = i1(:,:,1);

g1 = i1(:,:,2);

b1 = i1(:,:,3);

figure(1);
subplot(2,2,1);

imshow(r1);title('RED plane');

subplot(2,2,2);

imshow(g1); title('GREEN plane');

subplot(2,2,3);

imshow(b1); title('BLUE plane');

i1 = double(i1);
[row col dim] = size(i1);

plane = padarray(row,col);

im = cat(3,r1,g1,b1);

subplot(2,2,4);
imshow(im);title('RGB plane');

Output:

45

2). Aim: Convert RGB image to HSI.

Source Code:

closeall;

clearall;
clc;

im1 = imread('D:\Photos\blossom1.jpg');

HSV = rgb2hsv(im1);

figure(1);

imshow(HSV);%HUE image combine

title('HUE Image');

H=HSV(:,:,1);

S=HSV(:,:,2);
V=HSV(:,:,3);

figure(2);
subplot(2,2,1), imshow(im1); title('Original Image');

subplot(2,2,2), imshow(H); title('HUE Component');

subplot(2,2,3), imshow(S); title('SATURATION Component');

subplot(2,2,4), imshow(V); title('INTENSITY Component');

Output:

46

Aim: Convert Image RGB to CMY.

Source Code:
clearall;

closeall;

clc;

im = imread('D:\Photos\blossom1.jpg');

R = im(:,:,1);

G = im(:,:,2);

B = im(:,:,3);

R1 = im2double(R);

G1 = im2double(G);

B1 = im2double(B);

c = 1-R1;

m = 1-G1;
y = 1-B1; figure(2);

subplot(2,4,1);

imshow(im);title('orignal image');

subplot(2,4,2)

imshow(c); title('cyan plane');
subplot(2,4,3);
imshow(m); title('magenta plane');
subplot(2,4,4);
imshow(y); title('yellow plane');

47

Output:

Exp-8 study of image filtering in transform domain.

% Filtering in the transform domain

clear all;

f = double(imread('.\img\cameraman.tif'));

F = fftshift(fft2(f));

[u,v] = meshgrid(1:256,1:256);

z = (u-129).^2 + (v-129).^2;

for r = 128:-9:1; % sequence of 'ideal' disk-shaped filters

 H = double(z<r.^2); % lowpass

% H = double(z>r.^2); % highpass

 F1 = F; F1(round(sqrt(z))==r)=1e6;

 figure(1); imshow(log(abs(F1)),[]);

 G = F .* H;

 g = real(ifft2(ifftshift(G)));

 figure(2); imshow(g,[]); pause;

 mean(g(:).^2) % note: image energy is reduced

 end;

return;

%% --

for r = 128:-9:1; % sequence of Gaussian filters

 H = exp(-z/(2*r.^2)); % lowpass

% H = 1 - H; % highpass

 figure(1); mesh(H);

 G = F .* H;

 g = real(ifft2(ifftshift(G)));

 figure(2); imshow(g,[]); pause;

 end;

%% ---

H = -z; % Laplacian filter (see dip04, slide 55)

 figure(1); mesh(H); % beware!! the Laplacian has huge gain!!

G = F .* H;

g = real(ifft2(ifftshift(G)));

 figure(2); imshow(g,[]);

%%

 H = 1+z; % subtraction of the Laplacian,

% H = 1 + .0001 * z; % i.e. unsharp masking (slides 58-59)

 figure(1); mesh(H)

G = F .* H;

g = real(ifft2(ifftshift(G)));

 figure(2); imshow(g,[]); % pause;

% figure(3); imshow(histeq(g/max(g(:)))); % sharpening + hist.eq., slide

60

return;

Exp- 9 Implementation of homomorphic filter.

% Homomorphic filtering

clear all;

 f = double(imread('.\img\cameraman.tif'));

% f = double(imread('.\img\clip_bw_av.tif'));

figure(1); imshow(f,[]);

f = log(f+1);

F = fftshift(fft2(f));

[nc,nr] = size(f);

nr2 = nr/2+1; nc2 = nc/2+1; % (image size should be even)

[u,v] = meshgrid(1:nr,1:nc);

z = (u-nr2).^2 + (v-nc2).^2;

 gamma_h = 1; gamma_l = .2; wdth = 200; % cameraman

% gamma_h = 1.4; gamma_l = .5; wdth = 100; % clip_bw_av

H = (gamma_h - gamma_l).*(1 - exp(-.9 .* z/(wdth.^2))) + gamma_l;

% figure(1); mesh(H); return;

G = F .* H;

g = real(ifft2(ifftshift(G)));

g = exp(g)-1;

figure(2); imshow(g,[]);

return;

Exp- 10 implementation of non-linear filter.

% Nonlinear filters

clear all;

f = double(imread('.\img\cameraman.tif'));

[m,n] = size(f);

 fn = f + randn(m,n)*20; % additive Gaussian noise

% fn = f .* ((rand(m,n)-.5)*.6+1); % uniform multiplicative noise in

[0.7 , 1.3]

% fn = f; z = rand(m,n); fn(z<.005)=0; fn(z>1-.005)=255; %

impulse noise, prob. 2*.005

% z = rand(m,n); fn(z<.005)=0; fn(z>1-.005)=255; % mixed impulse-

other noise

fn(fn<0) = 0; fn(fn>255) = 255; % avoid negative values, in order to

use log(fn) later

 % note: actual noise variance will be

less than expected

w = [1 1 1; 1 1 1; 1 1 1] / 9;

return;

%%

g1 = filter2(w,fn); % averaging filter (arithmetic mean)

g2 = exp(filter2(w,log(fn+.01))); % geometric mean

 imshow([f, fn; g1, g2],[0 255]);

 PSNR_noisy = 10 * log10(256^2 / (mean(mean((fn-f).^2))))

 PSNR_g1 = 10 * log10(256^2 / (mean(mean((g1-f).^2))))

 PSNR_g2 = 10 * log10(256^2 / (mean(mean((g2-f).^2))))

%%

q = 1.7; % q>0 for dark impulse noise, q<0 for light impulse noise

g3 = filter2(w,fn.^(q+1)) ./ filter2(w,fn.^q); % contraharmonic mean

g4 = medfilt2(fn, [3 3]); % median filter on a 3*3

support

 imshow([f, fn; g3, g4],[0 255]);

 PSNR_noisy = 10 * log10(256^2 / (mean(mean((fn-f).^2))))

 PSNR_g3 = 10 * log10(256^2 / (mean(mean((g3-f).^2))))

 PSNR_g4 = 10 * log10(256^2 / (mean(mean((g4-f).^2))))

 %%

dum(:,:,1) = fn; % median filter on a 3*3 'plus'-

shaped support

dum(:,:,2) = [zeros(1,n); fn(1:m-1,:)];

dum(:,:,3) = [fn(2:m,:); zeros(1,n)];

dum(:,:,4) = [zeros(m,1) fn(:,1:n-1)];

dum(:,:,5) = [fn(:,2:n) zeros(m,1)];

g5 = median(dum,3);

 imshow([f, fn; g4, g5],[0 255]);

 PSNR_noisy = 10 * log10(256^2 / (mean(mean((fn-f).^2))))

 PSNR_g4 = 10 * log10(256^2 / (mean(mean((g4-f).^2))))

 PSNR_g5 = 10 * log10(256^2 / (mean(mean((g5-f).^2))))

 %%

dum(:,:,6) = fn; % center-weighted median filter,

with weight 3

dum(:,:,7) = fn;

g6 = median(dum,3);

 imshow([f, fn; g5, g6],[0 255]);

 PSNR_noisy = 10 * log10(256^2 / (mean(mean((fn-f).^2))))

 PSNR_g5 = 10 * log10(256^2 / (mean(mean((g5-f).^2))))

 PSNR_g6 = 10 * log10(256^2 / (mean(mean((g6-f).^2))))

 %%

g7 = fn;

for i=2:m-1; for j=2:n-1; % alpha-trimmed, 3*3, d=4

 dum = fn(i-1:i+1,j-1:j+1);

 dum = sort(dum(:));

 g7(i,j) = mean(dum(3:7));

 end; end;

 imshow([f, fn; g1, g7],[0 255]);

 PSNR_noisy = 10 * log10(256^2 / (mean(mean((fn-f).^2))))

 PSNR_g1 = 10 * log10(256^2 / (mean(mean((g1-f).^2))))

 PSNR_g7 = 10 * log10(256^2 / (mean(mean((g7-f).^2))))

return;

% la media geom. espande i neri e quindi sul rumore impulsivo evidenzia il

pepper e

% ripulisce il salt

Exp – 11 Implementation of inverse filter and wiener filter.

% Motion blur and turbulence blur restoration with inverse filter and

Wiener filter

clear all;

% f = double(imread('.\img\lenar.tif'));

f = double(imread('.\img\lena.tif')); f = f(101:450,51:400);

[m,n] = size(f);

[u,v] = meshgrid(1:n,1:m);

m2 = m/2+1; n2 = n/2+1;

a = 1/32; % equivalent to the average of a*m shots, each with a one-

pixel shift

 % for m=256, try with a = 1/128 ... 1/32 ... 1/8

PSF = sin(pi*(u-m2)*a) .* exp(-j*pi*(u-m2)*a) ./ (pi*(u-m2)*a); %

Motion degradation model

PSF(:,m2)=1; % when u=m2 the PSF is sin(0)/0, a Matlab NaN

% PSF = exp(-.0002*((u-m2).^2+(v-n2).^2).^(5/6)); % Atmospheric

turbulence, k = .0002 .. .002

 figure(1); mesh(abs(PSF));

F = fftshift(fft2(f));

Fb = F .* PSF;

fb = real(ifft2(ifftshift(Fb))); % blurred image

sdn = 10; fb = fb + randn(m,n)*sdn; % ...plus noise

% fb = round(fb); fb(fb>255)=255; fb(fb<0)=0; % image 'saved' as uint8

--> quantiz. noise

 G1 = Fb ./ PSF; % not realistic, only for reference

 G2 = fftshift(fft2(fb)) ./ PSF; % inverse filter

 H = PSF; H(abs(PSF)<.2)=.2; % 'raise' zeros in the PSF

 G3 = fftshift(fft2(fb)) ./ H; % clipped inverse filter

g1 = real(ifft2(ifftshift(G1)));

g2 = real(ifft2(ifftshift(G2)));

g3 = real(ifft2(ifftshift(G3)));

figure(2); imshow([fb, g1; g2, g3],[0 255]);

Hw = (conj(PSF) .* F.^2) ./ (PSF.^2 .* F.^2 + sdn^2); % Wiener filter

% Hw(abs(Hw)>5)=5; % clip peaks in the Wiener filter

 figure(3); mesh(abs(Hw));

Gw = fftshift(fft2(fb-mean(fb(:)))) .* Hw;

gw = real(ifft2(ifftshift(Gw))) + mean(fb(:));

figure(4); imshow([fb, gw],[0 255]);

psf = real(fftshift(ifft2(ifftshift(PSF))));

nsr = sdn.^2 ./ sum((f(:)/255).^2);

gwm = deconvwnr(fb/255,psf,nsr); % Matlab's Wiener filter

% figure(5); mesh(abs(psf));

 figure(6); imshow([fb, gwm*255],[0 255]);

return;

48

